

QUESTION

An antacid contains Al(OH)₃. It produces AlCl_{3 (aq)} on neutralization of stomach acid. How many moles of Cl⁻ ions are in 100.0 mL of 0.010 M AlCl₃ produced in the neutralization?

 $3 \text{HCl}_{(aq)} + \text{Al}(\text{OH})_{3 (aq)} \rightarrow \text{AlCl}_{3 (aq)} + 3 \text{H}_2\text{O}_{(l)}$

A.0.0010 mol B.0.010 mol C.0.0030 mol D.0.030 mol Molarity (M) = mol AICI₃ / Liter solution

mol $AICI_3 =$ Molarity $AICI_3$ x Volume solution (L)

QUESTION

How many moles of Cl⁻ ions are in 100.0 mL of 0.010 M AlCl₃ produced in the neutralization?

 $3 \text{HCl}_{(aq)} + \text{Al}(\text{OH})_{3 (aq)} \rightarrow \text{AlCl}_{3 (aq)} + 3 \text{H}_2\text{O}_{(l)}$

A.0.0010 mol

B.0.010 mol C.0.0030 mol D.0.030 mol

Molarity (M) = moles AICI₃ / Liter solution

mol AICI3 = Molarity AICI3 x Volume solution (L)

AICl_{3 (aq)} dissociates into 3 moles of CI⁻.

QUESTION

 $\underline{?} \operatorname{Na}_2 \operatorname{SO}_{4(aq)} + \underline{?} \operatorname{Ag}(\operatorname{NO}_3)_{3(aq)} \longrightarrow \underline{?} \operatorname{Ag}_2 \operatorname{SO}_{4(s)} + \underline{?} \operatorname{NaNO}_{3(aq)}$

The balanced net ionic equation for the reaction of sodium sulfate and silver nitrate contains which of the following species?

A) 2 Na⁺(aq) B) 2 NO₃⁻(aq) C) 2 Ag⁺(aq) D) 2 AgNO₃(aq) E) All of the above Answer

A) 2 Na⁺(aq) B) 2 NO₃⁻(aq) C) 2 Ag⁺(aq) D) 2 AgNO₃(aq) E) All of the above

QUESTION & ANSWER

If you began a reaction with the following ions in solution (all would be written with an (aq) subscript how would you represent the proper final net ionic equation? (Consult a solubility Table.)

$6\mathrm{Na^{\scriptscriptstyle +}} + 2\mathrm{PO_4^{3-}} + 3\mathrm{Fe^{2+}} + 6\mathrm{NO_3^{\scriptscriptstyle -}} \twoheadrightarrow$

A. $3Na^{+} + PO_{4}^{3-} + Fe^{2+} + 2NO_{3}^{-} \rightarrow No \text{ Reaction}$ B. $6Na^{+} + 2PO_{4}^{3-} + 3Fe^{2+} + 6NO_{3}^{-} \rightarrow Fe_{3}(PO_{4})_{2}(s) + 6NaNO_{3}$ C. $3Na^{+} + PO_{4}^{3-} + Fe^{2+} + 2NO_{3}^{-} \rightarrow Fe_{3}(PO_{4})_{2}(s) + 6 Na^{+} + 6 NO_{3}^{-}$ D. $2PO_{4}^{3-} + 3Fe^{2+} \rightarrow Fe_{3}(PO_{4})_{2}(s)$

Simple factor for the boldbilly of shifts in Water 1 Most dama; (M), 1 and are adults: Most dama; (M), 1 and are adults: 1 Most dama; (M), 1 and are adults: Most dama; (M), 1 and are adults: 1 Most dama; (M), 1 and are adults: Most dama; (M), 1 and (M), 1